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The method of associated (adjoint) fields for two~dimensional self-contained systems and
its application to nonlinear vibrations of systems with one degree of freedom [1 and 2] are
extended to more general three-dimensional self-contained systems, when the motion of the
image point of the system takes place in three-dimensional phase space.

As an example, the interaction of a self-oscillatory system with an energy source which
maintains these oscillations [3] is considered.

1. We consider a three-dimensional self-contained system of the form
z =p(zy 2 vy =g(zy, 1), £ =r(zy 2 .1

Here %, y, z are the coordinates of the phase point M in Euclidean space E;, and the
functions p, g, and r are assumed to be of class C, in their domain of definition.

To the velocity field V= pi+ gJ + rk of the phase point ¥ (x, ¥, 2) there corresponds an
associated force field[1 and 2] of the form F=P i+ Qj+ Rk, where the components P {x,
y, 2), Q(x, y, z) and Rz, y, z) are equal, respectively, to x, y", and 2", and hence by vir
tue of system (1.1) may be put into the form

P = (grad p-v), Q = (grad g-v), R = (grad r-v) (1.2)

2. The following Theorems hold.
Theorem 2.1. Any associated field F= Pi+ ¢} + RK may be normalized and repre-
seated in the form of a superposition of two fields, of which one is a potential field and the

other a field of gyroscopic forces.
In order to see this we introduce two vector fields into consideration: one is the gradient

of the function ¥V = — % (p? + g2+ r2), and the other is I'= (rot v x V),

Then from (1.2) we easily obtain

Fe—gradV+T  (F=Pi+ Qi+ FRK) @1

which proves the assertion, since I is a gyroscopic field, and the work done by it in a dis-
placement d 8 (dx, dy, dx) is equal to (rot ¥X V). d8=10.

The representation of the associated field F in the form (2.1) (the theorem on normnaliza«
tion) is sanalogous to the Gromeko-Lamb transformation in hydrodynamics f4.

We denote rot ¥ by 3(£, 77, {). Then the associated equations of motion

2" = P(z, p, 2, V'=0( 32, =Ry 3 (2.2)
may, because of the above theorem, be put into the following form:

. . . oV . . . av . . . v
T ==, YU - =—gr, T =l = =5 23)
These equations deacribe the motion of a Lagrange system with Lagrangian
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L=zt 2+ ) —pr— gy —rs' =V V== P+ ¢+ )
and are generalizations of the equations of Birkhoff [5] obtained for two-dimensional sys=
tems.

Theorem 2.2 Forthe Held F= Pl + Q]+ RK associated with system {1.1) to be
conservative, it is necessary and sufficient that

rot (@ X v) =0 (Q=rot v} (2.4)
This ia a consequence of Theorem 2.1 and the condition rot F= 0.

Corollary 2.1 If the associated force field is conservative and therefore satin-
fies (2.4), then there necessarily exists a function ¢ (x, y, ) such that

grad $(z, ¥, 2} = (@ X V) (2.5)
The potential V' *(x, 5, 2) of the field F will in this case by virtue of {2.1) be 2qual to
Ve =V — 19 V==1% (PFP+I+r) (2.6)
Corolluary 2.2, The function #(x, y, 2) satisfies Poisson’s equation
Ad iz, ¥, 2 =npiz, ¥ 2 @ =vrot Q@ — QY 2.7}

This follows immediately upon taking the divergence of both sides of (2.5h

Corollary 2.3. If one excludes the trivial case ¥ = 0, then according to (2.5), ¢
is identically constant when:

2} rot ¥= 0, i.e. the velocity field of the point in phase space is a potential field. In
this case the Piatfian form {pdx + gdy + rdz) will be a total differential, and conssquently
the system (1.1) belongs to the class of so-called potential systems [6];

b} the vectors ¥ and rot ¥ are collinear. This leads to the relation

ry—19, pz——rqux—-'i’?
p ¢ T

There is no snalog of case (b) for the two-dimensional systems since for plane-parallel
motion rot V [ V.

Corollary 2.4, Irot¥is a constant vector, then the condition (2.4} for conserve-
tiveness reduces to the relation

[divv) Qo= - ) ¥ {rot v =) (2.8)
In this case the function (/(x, ¥, z) by virtue of (2.7) will satisfy Poisson’s Eq.
Aw = Qa’

Corollary 2.5 Fortwo-dimensional selfscontained syatems (z = 0) and condition
of conservativeness (2.4) may be reduced to the form

a
L0+ ED=0 G=t—p) 2:8)

which coincides with s resnlt obtained earlier [2]. The case = const yields divv= 0.

Theorem 2.3, The function ¢/ {x, 5, 2} given by (2.5 in an integral of the associa~
ted system (2,3} and represents a Hamiltonian # taken with opposite sign.

This follows immediately if one writes down the generalized snergy integral and uses a
Lagrangian L = T ~ V*, where V* is defined by (2.6).

Thus r{x, y, z) = const is the equation of phase surfaces for the system (1.1},

Theotem 24 If the associated equations of motion (2.3) admit two firat integrals

Fe(z, 9, 5, 2, ¥, 7)== const {t = 1,2) (2.10)
independent of (1,1}, then the equations of the phase trajectories may be obtained by simple
substitation.

In fact, since the phase trajectories of (1.1} are » subset of the set of trajectorien of the
associated system (2.3), it follows that they also satisfy (2.10). Hence by virtus of the in-
dependence of the integrals {2,10) and (1.1), we obtain, by eliminating x°, y " and 2°, the
phase trajectories as lines of interssction of the two phase surfacea

F" (** ¥ %L P ?} = Fi. (3’ # :) == gonst {f = 1,2) (2.‘*}
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In order that the phase surfaces F, *(x, y, 2) = const (i = 1, 2) have no common tangent
planes, it is necessary that not all of the determinants

(e, Fs*) a(Fy*, Fyp*) 3 (Fy*, Fg*}
Afxr o s Afr =% * A far 2}
g4z, y) a4z, 2} 24y z}

vanish simultaneously.

8. The self-contained system
' =q—r, y=r-—p, f=p—yq (3.1)

will be called conjugate to the basic system (1.1), and its phase trajectories, determined
by the system of differential Egs.
dr dy dz
g—r r—p pP—4q
will be orthogonal to the phase trajectories of the basic system (1.1},

Denoting elementary displacements along the phase trajectories of the basic and conju~
gate system (1.1) and (3.1) respectively by d 8= vd¢ and d 8* = v*dt, where V=pl + qj+ rk
and V* = (g = )i+ (r = p)J + (p — g)k are the velocity of the phase points, we obtain

ds-ds* = (p(g—n+ag(r—p+rp—g)dar=20
which proves the orthogonality of the phase trajectories of the two systems.

The system of two Pfaffian equations obtained from (3.2) admit integral manifolds with
two variables. This follows from the fact that dx + dy + dz = 0, and consequently the rela-
tion

= dt (3.2)

z+y+z2=C (C == const) (3.3)
holds.
To effect further integration of (3.2) we use {3.3) to eliminate any one variable, let us

say z. This leads to the integration of a Pfaffian Eq. of the form
A(z, y, C)dz B (z, 4, C)dy=0 (3.4)

A(:t,y,C)m r(z,y,C—(x+y)) —p(.r,y, C"(z+y))
B(‘l'!.'/l'c)m r(x,y,C—(z+y))— q(I’y’C'_(z+y))

Suppose P (x, y, C) = C, is an integral of Eq. (3.4), Then the phase trajectory of the con-
jugate system (3.1) is a line of intersection of the cylindrical surface ®(x, y, C) = C, with
the plane x +y + 2= C.

Thus the problem of finding the phase trajectories of the basic system (1.1) reduces o
the construction of lines orthogonal to the trajectories of the conjugate system (3.1).

4. We return now to system (1.1) and suppose that the functions p(x, y, 2), ¢(x, y, 2)
and r{x, y, 2) are such that the condition {2.4) of conservativeneas of the associated force
field is now fulfilled. We seek a transformation of the form

dt = o (z, y, 3) dt (4.1)
which, while not changing the form of the phase trajectories, will make the transformed
associated field conservative. Transformations similar to (4.1) were used in particular by
Chaplygin [7] in the investigation of nonholonomic systems, and also by Birkhotf[5) in
studying general Lagrangian systems.

In order that the force field, transformed by (4.1}, be conservative, it is sufficient to
require rot ¥, = 0, where ¥, = w V. This condition yields

(grade X V) +orotv =10

which may be redaced to the form
grad Inw - v® = — divv* {4.2)

Here ¥* = (g = r} i+ (r = p)§ + {p = ¢)Kk is the previous velocity of the phase point of
the conjugate system (3.1).
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Hence the problem of finding a function w{x, y, z), which, following Chaplygin, we shall
call a reducing multiplier, reduces to the integration of the system
dr dy dz  dlno
g—r r—p p—gq —divy"

(4.3)

To integrate this system one may use the results given in the preceding Section.

5. We consider the simplest case, when the functions p, ¢ and r in (1.1) are linear
forms in the independent variables denoted by x;, x,, x5. System (1.1) may then be written
in vector notation as

Xy
e Ax, :() (= (ay)} 6.4)

%/

Here X is a column vector and 4 a constant matrix of order three (m = 3).

Suppose the associated force field (2.1) is conservative and, consequently, satisfies
condition {(2.4). We consider the possible cases.

a) Assume {} = rot v= 0, so that the fluid motion connected with the system is a poten-
tial flow. By virtue of (5.1) this reduces to the condition a;; = a;;, 50 that the matrix 4 is
symmetric. Furthermore the divergence of the velocity vector will equal the trace of the

trix A:
matrix divv = trd = a;; + ay; + ass (5-2’

b) Suppose rot ¥||¥. This case also has a simple hydrodynamical interpretation, namely
that the vortex lines in the fluid flow are parallel to the phase trajectories.

Since for the system (5.1) rot Vv is a constant vector, the vortex lines as well as the phase
trajectories will be straight lines. This result may be obtained immediately by integrating

the system

ix__:d_y:f_{z__-dz (rot v =8 (£, 0. Lo))

B M Lo
¢) Suppose rot V= const. Denoting rot V= ({}, # 0), we use (2.8) to obtain
Ao =(Qs- ) v (A =divv=ay + as - ass) (5.3)
This relation together with (5.1) may be reduced to the form
Eo
(A—AE)Q2o=0 (Qo= (n)) (5.4)
Lo

Here {1, is a three-dimensional column-vector, and E is the identity matrix.

Since the vector S}o is different from zero, condition (5.4) is equivalent to the character-
istic Eq. |4 — AE| = 0 of the matrix A. Consequently A= A =1, 2 3) equal to divy,
are eigenvalues of the matrix A. We note that the matrix 4 will be singular in the case when
divv=0{A=0).

6. As an example of a nonlinear system we examine a self-oscillatory system interac-
ting with an energy source maintaining the oscillation (Fig. 1), We write the equations of
motion in the following form [3): £+ 2n7 + Kz = oT (v — ),

¢ 4+ A9 = BT (v — z)) (6.1)

Here x is the displacement of the oscillation mass m;
¢ is the agle of rotation of the rotor of an engine; v=R ¢
is the velocity of the belt at the point of contact; T{v — x*)
is the sliding friction force, depending.on the relative vel-
ocity v,=v — x°, snd k2= ¢/m, n, a, A, and B are cons-
tants, We introduce the following phase variables: , y =
=y wx’yand 2=, As a result the system (6.1) will take
the form
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=p=Rz—y, v =q=kz—2ny+ (2n — A) Rz 4 (BR —a) T (y) (8.2)
f=r=—Az-+ BT (y)

We shall make no assumptions on the friction force T(y). From physical considerati ons
it follows that T(y) should be an odd function. In the simplest case, when T(y) is a linear
function of y, the system (6.2) is also linear.

To integrate system (6.2) we use (3.3) and, under the simplifying assumption that 4 + R =
= 0, obtain for x a linear differential equation of first order.

Ornimng the intermediate calculations, we write the final result

_ Q( 1) dy M+ My + MsT (y)
e=he (0 + Vi o) (= e\ o7 @ =5 5 )
Here C; is a constant of integration and (6.3)
M =1k —2nR + AR — 4, M, = C (k* — M)
My= M —k* — 2In, M;=BR —B—a

The intersections of the cylindrical surfaces F(x, y, C;) = 0 (6.3) with the planes x +y +
+ z = C provides a system of lines orthogonal to the phase trajectories of the original sys-
tem (6.2)

We define the reducing multiplier  according to (4.3). Since the divergence of the velo-
city vector of the phase point for the conjugate system is:

divv* =D + BT’ (y) D=14+KB+R{A+4+4—2n) (6.4)
then by virtue of (4.3) we obtain

Mw=nﬂ—sﬂiﬂuﬂ ) (6.5)

y+ BT (y)

This function assumes a particularly simple form when D = 1,

This yields @ = 1/(y + BT(y)).

In conclusion we mention that the resulits obtained here may be generalized and exten-
ded to the case of n-dimensional self-contained systems.
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