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The method of associated (edjoint) fields for two-dimensional self-contained systems and 
its application to nonlinear vibrations of systems with one degree of freedom [l and 21 are 
extended to more general three-dimensional aelf-contained systems, when the motion of the 
image point of the system takes place in three-dimensional phase space. 

As an example, the interaction of a aelf-oscillatory system with an energy source which 
maintains these oscillations [3] is considered. 

1. We consider a three-dimensional self-contained system of the form 

2’ = p Ix, Y, 4, Y’ = Q (2, Y, 4, 2’ = f (x, y, 2) (1.1) 

Here x, y, s are the coordinates of the phase point iw: in Euclidean apace ES, and the 
functions p, q, and r are assumed to be of class C, in their domain of definition. 

To the velocity field v = pi + q j + rk of the phase point M&z, y, z) there corresponds an 
associated force field [ 1 and 21 of th e f arm F =P L + Qf + R k, where the components P G, 
y, t), Q(x, 7, I) and R (s, y, t) are equal, respectively, to r-, y; and r”, aud hence by vir 
tue of system (1.1) may be put into the form 

P = (grad p -v), Q = (grad q .v), R = (grad r-v) (1.2) 

2. The following Theorems hold. 
T h e o r e m 2.1. Any associated field F t Pt + Q j + R k may be normalized and repro 

sated in the form of a superposition of two fields, of which one is a potential field and the 

other a field of gyroscopic forces. 
In order to etee this we introduce two vector fields into consideration: one is the gradient 

of the function V = - % (p2 + q z + r2), and the other is r = (rot V x Vh 

Then from (1.2) we easily obtain 

FE: -gradV+I’ (P = Pi + Q j + Rk) (2.1) 

which prove@ the assertion, since r is a gyroscopic field, and the work done by it in a dis- 
placement d 8 (dx, +, dz) is equal to (rot V x V) l d 6 = 0. 

The repmaentation of the arwciated field F in the form (2.1) (the theorem on normaliza- 
tion) ia utalogous to the Gromeko.Lamb transformation in hydrodynamics 14. 

We denote rot v by a([, 9.4). Then the maodated equations of motion 

2” = P (T, y, z), #” = Q (2, &, 4, z” = R (2, I:, 4 

may, becmse of the above theorem, be put into the following form: 

(2.2) 

CW 
z”+6y’-qz’zz_-!g-, Y..+J$._~$=-~, z” + qz’ - sy’ = -g (2.3) 

These eqaatioos deuzfk the motion of m Lagrange system with Legmnglut 
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T h Q 0 t e m 2.2, For the 5eld F= Pi + Qj 4 RL ascrociated with mystern (LX) t0 ba 
conservative, it la aecessay end sufficient that 

rot(0x v)=O (Q = rot v) (2.4) 
This is a conaeqn4nce of Thaorem 2.1 and the condition lot F= 0. 
C o r o 1 i a r y 2.X. ff the associated force field is conservative and thatfare aatfr 

fies (2,4), then there ncceaserfly exists a function r&(x, y, rf such thrt 

grad Q fz, L r) = (Q x V) W) 

The potential Y* i(s y, s) of tb field F will in this me4 by vfrtut 0f f2.l) b4 a@ to 

v*=v-* (V = - ‘it w t n* + f% WI 
G 0 I 0 I 1 B r y 12. The. function ${x, yt tf asti4fies Poisson’s equation 

Alp (t, tr, 4 = P b, ~7 4 c = v-rot R - WI cm 
This fotlom immedfetely upon takiig th4 divergen~4 af both sides of t2S)~ 
C o r o 1 1 a r y 2.8, if one exclndcs the trivial CBM? V= 0, then accordfng to (2&, $6 

is identically EL)natent when: 
a) rot V = 0, i.e. th8 velocity field of the point in phess space is a potent&& f&Id+ in 

this cat14 the Pfaffiaa form fpdx 4 qdy + rift) will be e total dfffer4ntir1, mtd conixequentfy 
the system il.1) belongs to the class af so-callsd potential systems It& 

b) the veetom Y and rot V are collinear. This ltade to the relation 

I” --Q 
A-2 

P,--‘r e,--P, 
=‘-ZZZ 

P !i r 

There is x10 anelag of case &l-for the two-dimmaionaf systems sfnee for phegudhd 
motion rot V S,V, 

C o r o 11 a r y 2.4. If rot V is a constant vector, then the condition (2.4) for conserve 
tivenses reducsa ta the relation 

(divvfSlo=(Uo .v)v (rot v = Ua) (2.431 

In this cad4 tbo function $(x, y, 2) by virtue of (2.7) will eatisfy POisSOn’tt Eq. 

A$ = - t&r 

C o r o 11 a F y 2.5. For two-dimensional self+ontained systama (I = 0) tmd ~ndftf0n 
of conssrvativ4nessr (2.4) may be reduced to the form 

(263) 

which mincidrrs with. a result obtained e&a f2]. Tbs cme <=J cmmt yields div V * fh 

T h t o r e m 2.8, The fxnction r#& yt a) given by (2.5) is sx integral of the asa00fa. 
tsd system (2.3) aud represents a Ramiltonian ff t&en with opposite sign. 

This follows immediately if on4 writes down the geacralixad energy integral and rises a 
Lagrangfnn L = T - V*, whert V+ is defined by f2,d). 

Thes +&# p x) = ~bnrrt is the equation of phrase aurf~ces f0r the systsm fl.1). 
T h 4 o r c m 2.4 ff the associated equations 0f motion (2.3) admit two first fntagrals 

F( (t, p, I, z’, p’, z’) = ebb (t = L2) (2.10) 

indtpcadsnt of klf, then ths equntfona of the phase trajectorferr mny bc obminsd by sfmple 
mtbstft0tion. 

In fact, sines th4 phacre tr~jectorka of II.3 me a wbrst of tits set of trajactoriea of the 
assocfated systam (2.5), it follows that they also a;rtisfy (2.10). Hence by vfrtns of tha in- 
deptndance of tha intagrela &.lO) rmd &‘I), we obtafn, by elfmfnatfnng x8, y ’ and x l , the 
phnae trajscterfaa utr lines of intstrsctfort of the two pha~44 surfaces 

Pt (% Y, n, Ft Q, r) = Pi+ it* pt x) - 0Q93t fr - k2) (2s) 
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In order that the phase surfaces Ft *fx, y, tf = coast 0 = 1, 2) have no common tangent 

planes, it is necessary that not all of the determinants 

a (Fl., Fa’) a (Fl., Fa’) 3 (PI*, Fa’) 
a (%I yf ’ (3(X, 2) * a o.Iv 2) 

vanish simultaneously. 

8. The self-contained system 

2’ = p - r, &!‘=r--p, “‘=:P__9 (3.1) 

will be called conjugate to the basic system (1.1). and its phase trajectories, determined 

by the system of differential Eqs. 

dx dv dz 
-xzz 
q-7 

---~---~ddt 
r-P P-9 

(3.2) 

will be orthogonal to the phase trajectories of the basic system (1.1). 
Denoting eitmentary displacements along the phase trajectories of the basic and conju- 

gate system (1.1) and (3.1) respectively by d 8 = vdt and d 8* = Vdt, where v x pi + q j + rk 
and V+ = (q - r)i + (r - p) j + @J - g) k are the velocity of the phase points, we obtain 

deeds+ = (p (g - r) + q (r - p) + r (p - q)) dP = 0 

which proves the orthogonality of the phase trajectories of the two systems. 
The system of two Pfaffian equations obtained from (3.2) admit integral manifolds with 

two variables. This follows from the fact that dx + dy + ds = 0, aud consequently the rela- 
tion 

r+f/+z=c (C = const) (3.3) 
holds. 

To effect further integration of (3.2) we use (3.3) to eliminate any one variable, let OS 
nay I. This leads to the integration of a Pfaffian Eq. of the form 

A (t, I/, C) dx + B (2, Y, C) dy = 0 (3.4) 

A ts, Y, C) = r (~9 Y, C - (z + ~1) - P (z, Y, C - fz + ~1) 

B (5, y, C) = r (2, y, C-_(z i- ~1) - q (2, Y, C - (2 f y)) 

Suppose @(x, y, C) = C, is an integral of Eq. (3.4). Then the phase trajectory of the con- 

jugate system (3.1) is a line of intersection of the cylindrical rurface cP(x, y, C) = C, with 

theplaner+y+z=C. 
Thus the probtem of finding the phase trajectories of the basic ayetern (1.1) reducer to 

the construction of lines orthogonal to the trajectories of the conjugate system (3.1). 

4. We return now to ayatem (1.1) and auppoae that the functions pf.z, y, z), qb, y, z) 
and r&, y, t) are such that the condition (2.4) of conservativeness of the associated force 
field is now f&filed. We seek a transformation of the form 

iit = 0 (2, v, 2) a7 (4.4) 

which, while not changing the forar of the phase trajectories, nil1 mahe the transformed 
associated field conservative. Traasformationa similar to (4.1) were ndsd in particalar by 
Chaplygin [7] in the investigation of nonhol~nomic ayatema, aud also by Birthoff [S] in 
studying general Lagrangia systems. 

In order that the force field, transformed by (4.1), be conservative, it is anfficient to 
require rot *t I 0, where it - 01. This coadidoa yields 

(gradosXr)+@rotr=O 

which msy be reduced to the form 
grad b l +e-dfVv+ (4.2) 

Hare V* - (q - r)l+ (r - p)] + ~JI - q)k is the prevfoas velocity of the phase point of 
the canjagata syatam (3.1). 
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Hence the problem of finding a function ok, y, I), which, following Chaplygin, we shall 
call a reducing multiplier, reduces to the integration of the system 

dx & dz dlno 
__-&-~~---_ 
q--r r-p P---Q - div v* (4.3) 

To integrate this system one may use the results given in the preceding Section. 

5. We consider the simplest case, when the functions p, q and r in (1.1) are linear 
forms in the independent variables denoted by x1, x2, x3. System (1.1) may then be written 
in vector notation as 

fX,\ 
x’ = Ax, X=(X*) I '=('jj)! 15.1) 

\x,! 

Here x is a column vector and A a constant matrix of order three (m = 3). 
Suppose the associated force field (2.1) is conservative and, consequently, satisfies 

condition (2.4). We consider the possible cases. 
a) Aaatme n = rot V= 0, so that the fluid motion connected with the system is a poten- 

tial flow. By virtue of (5.1) this reduces to the condition u,, = o,, , so that the matrix A is 
symmetric. Furthermore the divergence of the velocity vector will equal the trace of the 
matrix A: 

(5.2) 

b) Suppose rot v/v. Th is case also Las a simple hydrodynamical interpretation,.namely 
that the vortex lines in the fluid flow are parallel to the phase trajectories. 

Since for the system (5.1) rot v is a constant vector, the vortex Iincs as well as the phase 
trajectories will be straight lines, This result may be obtained immediately by integrating 
the system 

__z!QL& dx 

40 - 90 so - 
(rot v = QO (Co, qo, E;ofl 

c) Suppose rot V= const. Denoting rot v = Q&no f 0), we use (2.8) to obtain 

U&=(a,.~)v (h = div v = art + ~22 + axa) (5.3) 

This relation together with (5.1) may be reduced to the form 

(A-&E) ao=o (Qo= Q) (5.4) 

Here St, is a three-dimensional column-vector, and E is the identity matrix. 
Since the vector .&, is different from zero, condition (5.4) is equivalent to the character 

isticEq.lA-XEI=Ooftb e miitrix A. Consequently X f X, (i = 1, 2, 3), equal to dfv V, 

me tigenvalnes of the matrix A, We note that the matrix A will be singular in the case when 
div V= 0 (A= 0). 

6. As an example of a nonlinear system we exsmine a seifcoscillatory system interaa 
ting with an energy source maintaining the oscillation (Fig. 1). We write the equations of 
motion in the following form [3]: z” + 2~’ f kaz = aT (u - a~‘), 

(Fig. 1) 

‘p” + Aq’ = B T (v - x’) (6.1) 
Here x is the dinplacement of the omcillation mass m; 

q$ is the engle of rotation of tba rotor of au engine; v= R+’ 
is the velocity of the belt at the point of conta‘ct; T(u - ~‘1 
is the sliding friction force, dependfng.on ths relative veb 
ocityv,ov-x.,~dkl-c/m,n,4A,andBuecons- 
tar4tsr We introduoe the following phase variahls8: x, y = 
= v - r** and t - #5= As a resalt tbs symtsm (6.1) will take 
the form 
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~+=p= Rz - y. p’ = q = k’x - 2ny + (2n - A) Rz + (BR - e) T (p) (8.2) 

z’= r= -Az+BT(d 

We &all make no ammuuptione on the friction force T(y). From physical conoiderati 011s 

it follows that I’(y) should be en odd function, In the eimpfsat case, when T(y) ie a linear 

fnnction of y, the qmtem (6.21 ie alao linear. 
To integrate qwtem (6.2) we not (3.31 and, under the simplifying a8sWUpdOB that A + R = 

- 0, obtain for x e linear differential equation of first order. 
Omitting the intermediate calculationa, we write the final reanlt 

z=h(y) (cI+ f i BOY) (h= exp~Y~;;(Y)’ ~=~~+y~~~~(~)) 

Here Ct ie a constant of integration and 
(6.3) 

M=kr- 2nR+AR-A, M,=C(k’-MM) 

Mz = M - kg - 2n, M,=BR-R-a 

‘l’he intareecdona of the cylindrical surfaces F(x, y, Ctl = 0 (6.31 with the planes x + y + 

+ a w C provide8 a system of lines orthogonal to the phase trajectories of the original sys= 

tern (6.21. 
WC define the reducing multiplier o according to (4.3). Since the divergence of the velo- 

city vector of the phase point for the conjugate system is: 

div f = D + BT’ (g) (D = i + Ir’ $ R (1 f A - 2n)) (6.4) 

then by virtue of (4.3) we obtain 

fa(y)=exp - ( s $$$&$dy) (6.51 

This function aseumee a particularly simple form when D = 1. 
This yields o = l/(y + BT(y)). 
In conclusion we mention that the results obtained here may be generalized end eaten- 

ded to the case of n-dimaraional self-contained systems. 
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